Evaluating the effect of multiple sclerosis lesions on automatic brain structure segmentation
نویسندگان
چکیده
In recent years, many automatic brain structure segmentation methods have been proposed. However, these methods are commonly tested with non-lesioned brains and the effect of lesions on their performance has not been evaluated. Here, we analyze the effect of multiple sclerosis (MS) lesions on three well-known automatic brain structure segmentation methods, namely, FreeSurfer, FIRST and multi-atlas fused by majority voting, which use learning-based, deformable and atlas-based strategies, respectively. To perform a quantitative analysis, 100 synthetic images of MS patients with a total of 2174 lesions are simulated on two public databases with available brain structure ground truth information (IBSR18 and MICCAI'12). The Dice similarity coefficient (DSC) differences and the volume differences between the healthy and the simulated images are calculated for the subcortical structures and the brainstem. We observe that the three strategies are affected when lesions are present. However, the effects of the lesions do not follow the same pattern; the lesions either make the segmentation method underperform or surprisingly augment the segmentation accuracy. The obtained results show that FreeSurfer is the method most affected by the presence of lesions, with DSC differences (generated - healthy) ranging from - 0.11 ± 0.54 to 9.65 ± 9.87, whereas FIRST tends to be the most robust method when lesions are present (- 2.40 ± 5.54 to 0.44 ± 0.94). Lesion location is not important for global strategies such as FreeSurfer or majority voting, where structure segmentation is affected wherever the lesions exist. On the other hand, FIRST is more affected when the lesions are overlaid or close to the structure of analysis. The most affected structure by the presence of lesions is the nucleus accumbens (from - 1.12 ± 2.53 to 1.32 ± 4.00 for the left hemisphere and from - 2.40 ± 5.54 to 9.65 ± 9.87 for the right hemisphere), whereas the structures that show less variation include the thalamus (from 0.03 ± 0.35 to 0.74 ± 0.89 and from - 0.48 ± 1.08 to - 0.04 ± 0.22) and the brainstem (from - 0.20 ± 0.38 to 1.03 ± 1.31). The three segmentation approaches are affected by the presence of MS lesions, which demonstrates that there exists a problem in the automatic segmentation methods of the deep gray matter (DGM) structures that has to be taken into account when using them as a tool to measure the disease progression.
منابع مشابه
Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملMultiple Sclerosis Lesions Segmentation in Magnetic Resonance Imaging using Ensemble Support Vector Machine (ESVM)
Background: Multiple Sclerosis (MS) syndrome is a type of Immune-Mediated disorder in the central nervous system (CNS) which destroys myelin sheaths, and results in plaque (lesion) formation in the brain. From the clinical point of view, investigating and monitoring information such as position, volume, number, and changes of these plaques are integral parts of the controlling process this dise...
متن کاملP9: Cervical Spinal Cord Extraction in Patients with Multiple Sclerosis Using Magnetic Resonance Imaging for Measuring Cross-Sectional Area
Multiple sclerosis (MS) refers to the lesions that accumulate in the brain and spinal cord. Magnetic resonance imaging (MRI) is the most sensitive and versatile modality used to show changes in the tissues over time. There has been significant interest in evaluating the relationship between the brain atrophy and disease progression rather than the spinal cord atrophy. The cervical spinal cord h...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2017